This course seeks to cover the basics of semiconductor devices including the physics of energy bands, doping and carrier statistics and transport leading up to the understanding of common semiconductor devices including p-n junctions and their applications, BJTs and MOSFETs. The course will also give a flavour of the basics of compound semiconductors and their devices, and also touch base with opto-electronic devices such as solar cells, photodetectors and LEDs. The course will ensure that undergraduates, college teachers and other interested audience with no background in semiconductors are able to grasp the content. In parallel, the course will consistently seek to engage the audience by giving real-life examples pertaining to the content, and also seek to calibrate the content with respect to practical and commercial technologies which are all around us and which use semiconductor devices. There will be enough food for thought even for advanced learners such as PhD students and active researchers.
INTENDED AUDIENCE: Audience with background in electrical and electronics engineering as well as interdisciplinary areas such as energy science and engineering, industrial electronics and so on.
CORE/ELECTIVE: None
UG/PG: UG/PG
PREREQUISITES: high school physics & math, 10+2 physics
INDUSTRY SUPPORT: Semiconductor
8568 students have enrolled already!!
ABOUT THE INSTRUCTOR:
Digbijoy N. Nath completed his B.E. (Hons) in Electrical and Electronics Engineering from BITS, Pilani (Rajasthan) and PhD in Electrical Engineering from Ohio State University, Columbus specializing in gallium nitride based semiconductor devices. He has been as Assistant Professor at Centre for Nano Science and Engineering (CeNSE) at Indian Institute of Science (IISc), Bangalore since Aug 2014. His research interests lie in wide band gap semiconductor devices for high power & RF electronics/deep-UV opto-electronics. He has authored/co-authored 46 publications so far. He has been teaching a postgraduate level course Semiconductor Devices and IC Technology for PhD/Masters students at IISc for four years while he has also started a new advanced-level course titled Semiconductor Opto-electronics and Photovoltaics (jointly with another faculty member).
COURSE LAYOUT:
Week 1 : Importance of semiconductor devices and their diverse applications. Introduction to semiconductors, concept of energy bands and how bands form. Effective mass of electrons, E-k diagram. Concept of holes. Concept of Fermi level, Fermi-Dirac distribution. Doping (extrinsic & intrinsic semiconductor), density of states. Week 2 : Equilibrium electron-hole concentration, temperature-dependence. Carrier scattering and mobility, velocity saturation, Drift-diffusion transport Week 3 : Excess carrier decay & recombination, charge injection, continuity equation, quasi-Fermi level Week 4 : p-n junction: static behaviour (depletion width, field profile), p-n junction under forward & reverse bias, current equations, generation-recombination current and reference to typical devices. Week 5 : Zener and avalanche breakdown, Capacitance-voltage profiling, metal/semiconductor junction – Ohmic and Schottky contacts, reference to device applications. Week 6 : MOS capacitor, charge/field/energy bands, accumulation, inversion, C-V (high and low frequencies), deep depletion, Real MOS cap: Flat-band & threshold voltage, Si/SiO2 system. Week 7 : MOSFET: structure and operating principle, derivation of I-V, gradual channel approximation, substrate bias effects, sub-threshold current and gate oxide breakdown. Control of threshold voltage, short channel effects. Moore’s Law and CMOS scaling Week 8 : Introduction to compound semiconductors & alloys, commonly used compound semiconductors, heterostructure band diagrams and basics of MODFET & HEMT, introduction to quantum well, applications of heterostructure device technologies Week 9 : BJT: working principle, DC parameters and current components, base transport factor, Early Effect, charge control equation & current gain, need for HBT. Applications of BJTs/HBTs in real-life. Week 10 : (Basics of) - transistors for high-speed logic, transistors for high frequency (RF), transistors for high power switching, transistors for memories, transistors for low noise, transistors for the future. Week 11 : Solar cells: principle, efficiency, Fill factor, Shockley-Quiesser limit, silicon solar cells, multi-junction solar cell, Photodetectors: operation, figures of merit (responsivity, QE, bandwidth, noise, Detectivity), examples from IR to UV detectors. Week 12 : LEDs: working principle, radiative/non-radiative recombination, various types of efficiencies (EQE, WPE, IQE), light extraction and escape cone. Blue LED and the Nobel Prize, visible LEDs and chromaticity.
SUGGESTED READING MATERIALS:
i. Solid State Electronic Devices, by Ben Streetman and Sanjay Banerjee, Prentice Hall. ii. Introduction to Semiconductor Materials and Devices, by M. S. Tyagi, Wiley Publications.
CERTIFICATION EXAM :
The exam is optional for a fee.
Date and Time of Exams: April 28 2019(Sunday). Morning session 9am to 12 noon; Afternoon Session 2pm to 5pm.
Registration url: Announcements will be made when the registration form is open for registrations.
The online registration form has to be filled and the certification exam fee needs to be paid. More details will be made available when the exam registration form is published.
CERTIFICATION:
Final score will be calculated as : 25% assignment score + 75% final exam score
25% assignment score is calculated as 25% of average of Best 8 out of 12 assignments
E-Certificate will be given to those who register and write the exam and score greater than or equal to 40% final score. Certificate will have your name, photograph and the score in the final exam with the breakup.It will have the logos of NPTEL and IISc.It will be e-verifiable at nptel.ac.in/noc.