X
X
X

X
Courses » AI:Constraint Satisfaction

AI:Constraint Satisfaction

ABOUT THE COURSE:
Human beings solve problems in many different ways. Problem solving in artificial intelligence (AI) is inspired from these diverse approaches. AI problem solvers may be based on search, on memory, or on knowledge representation and reasoning. An approach to problem solving is to pose problems as constraint satisfaction problems (CSP), and employ general methods to solve them. The task of a user then is only to pose a problem as a CSP, and then call an off-the-shelf solver. CSPs are amenable to combining search based methods with reasoning. In this 2 credit course we will look at general approaches to solving finite domain CSPs, and explore how search can be combined with constraint propagation to find solutions.

This course is a companion to the course “Artificial Intelligence: Search Methods for Problem Solving” that was offered recently and “Artificial Intelligence: Knowledge Representation & Reasoning” that is being offered concurrently. The lectures for both courses are available online. 

INTENDED AUDIENCE:
Both UG and PG students studying Computer Science (any degree) can take it.

PRE-REQUISITES: Exposure to AI:  Search Methods for Problem Solving and AI: Knowledge Representation & Reasoning helps, but is not necessary.

INDUSTRY SUPPORT: Software companies dealing with artificial intelligence applications 

4799 students have enrolled already!!

COURSE INSTRUCTOR:


Deepak Khemani is Professor at Department of Computer Science and Engineering, IIT Madras.

He completed his B.Tech. (1980) in Mechanical Engineering, and M.Tech. (1983) and PhD. (1989) in Computer Science from IIT Bombay, and has been with IIT Madras since then. In between he spent a year at Tata Research Development and Design Centre, Pune and another at the youngest IIT at Mandi. He has had shorter stays at several Computing departments in Europe. 

Prof Khemani’s long-term goals are to build articulate problem solving systems using AI that can interact with human beings. His research interests include Memory Based Reasoning, Knowledge Representation and Reasoning, Planning and Constraint Satisfaction, Qualitative Reasoning and Natural Language Processing.
COURSE LAYOUT:

Module 1: Constraint satisfaction problems (CSP), examples.   
Module 2: Constraint networks, equivalent and projection networks.
Module 3: Constraint propagation, arc consistency, path consistency,   i-consistency.
Module 4: Directional consistency and graph ordering, backtrack free search, adaptive consistency.
Module 5: Search methods for solving CSPs, lookahead methods, dynamic variable and value ordering.
Module 6: Lookback methods, Gaschnig's backjumping, graph based backjumping, conflict directed back jumping. Combing lookahead with lookback, learning.
Module 7: Model based systems, model based diagnosis, truth maintenance systems, planning as CSP.  Wrapping up.

CERTIFICATION EXAM:
  • Course duration : 8 weeks
  • Date and Time of Exams: April 28 (Saturday) and April 29 (Sunday) : Afternoon session: 2pm to 5pm
  • Exam for this course will be available in one session on both 28 and 29 April. 
  • Final List of exam cities will be available in exam registration form
  • Registration url - Announcements will be made when the registration form is open for registrations. 
  • The online registration form has to be filled and the certification exam fee needs to be paid.
  • More details will be made available when the exam registration form is published.

Certificate
  • E-Certificate will be given to those who register and write the exam and score greater than or equal to 40% final score. 
  • Final score = 25% assignment score + 75% exam score
  • 25% assignment score is calculated as 25% of average of scores of best 6 out of 8 assignments
  • Certificate will have your name, photograph and the score in the final exam with the breakup. It will have the logos of NPTEL and IIT Madras. It will be e-verifiable at nptel.ac.in/noc.
REFERENCE:

1. Deepak Khemani, A First Course in Artificial Intelligence, McGraw Hill Education (India), 2013.

2. Rina Dechter, Constraint Processing, Morgan Kaufmann, 2003.